Small, Capable, Readily-Replicable Payloads for Remote Sensing of Volatiles

NASA

Completed Technology Project (2016 - 2018)

Project Introduction

Development of a small, scientifically capable, readily-replicable IR point spectrometer, miniaturizing by several factors a crucial (and proven) technique to enable to assay of volatiles from small satellites.

Develop an IR point spectrometer able to measure 2.0-4.0 μ m (SWIR) and 5.5-12 μ m (MIR) reflectance and emission from a 0.05 albedo asteroid with an IFOV of \leq 5mrad and with SNR sufficient to detect 1% MIR band depths due to OH/H₂O at 10 nm spectral resolution and distinguish absorptions related to Si-O vibrations that distinguish key classes of asteroids and the extent of aqueous alteration. The volume is not to exceed 2U and the target rebuild cost of the payload element (for a cubesat-class implementation; scalable to higher class if desired) is not to exceed \$200k.

Anticipated Benefits

Enables scientifically useful detection of volatile and silicate species on dark objects like asteroids and terrestrial planets using a 2U instrument that can be carried on small spacecraft (Cubesat/Smallsat class).

Enables detection of volatile and other species on small dark objects using small spacecraft (Cubesat/Smallsat class) that could be useful for commercial activities, including assessment of water-content and extractability for fuel production.

Enables scientifically useful detection of volatile and other species on dark objects using small spacecraft (Cubesat/Smallsat class).

Primary U.S. Work Locations and Key Partners

Image of development unit configured in the testbed.

Table of Contents

Project Introduction	1	
Anticipated Benefits		
Primary U.S. Work Locations		
and Key Partners	1	
Images	2	
Organizational Responsibility	2	
Project Management		
Technology Maturity (TRL)	3	
Technology Areas	3	
Target Destinations	3	
Supported Mission Type	3	

Center Independent Research & Development: JPL IRAD

Small, Capable, Readily-Replicable Payloads for Remote Sensing of Volatiles

Completed Technology Project (2016 - 2018)

Organizations Performing Work	Role	Туре	Location
	Lead	NASA	Pasadena,
	Organization	Center	California

Primary U.S. Work Locations

California

Images

JPL_IRAD_Activities Project Image

Image of development unit configured in the testbed. (https://techport.nasa.gov/imag e/28086)

Organizational Responsibility

Responsible Mission Directorate:

Mission Support Directorate (MSD)

Lead Center / Facility:

Jet Propulsion Laboratory (JPL)

Responsible Program:

Center Independent Research & Development: JPL IRAD

Project Management

Program Manager:

Fred Y Hadaegh

Project Manager:

Fred Y Hadaegh

Principal Investigator:

Carol A Raymond

Co-Investigators:

Jordana Blacksberg Bethany Ehlmann William R Johnson Matthew E Kenyon

Center Independent Research & Development: JPL IRAD

Small, Capable, Readily-Replicable Payloads for Remote Sensing of Volatiles

Completed Technology Project (2016 - 2018)

Technology Areas

Primary:

- TX07 Exploration Destination Systems
 - ☐ TX07.1 In-Situ Resource Utilization
 - ☐ TX07.1.1 Destination Reconnaissance and Resource Assessment

Target Destinations

Others Inside the Solar System, Foundational Knowledge

Supported Mission Type

Push

